Listed in 2001 among the "10 Emerging Technologies That Will Change the World" by the MIT Technology Review, microfluidics is considered just as revolutionary for biology and chemistry as microprocessors have been to electronics and IT, and it applies to a huge market.

Today, this young discipline, which began to take off in the 2000s with closed systems made up of microchannel networks, is itself being radically transformed by the discovery made by the group of researchers from Polytechnique and McGill University, which reinforces the theoretical and experimental foundations of open-space microfluidics.

Indeed, the classical configuration of closed-channel microfluidic devices provides several disadvantages: the scale of the channel cross-sections increases the stress that cells undergo when they are culture; and they are not compatible with the cell-culture standard, the Petri dish, which makes it hard for the industry to adopt it.

ELEGANT VISUAL SYMMETRY REMINISCENT OF THE WORK OF ARTIST M. C. ESCHER

To understand these patterns, Professor Gervais's team had to develop a new mathematical model for open multipolar flows.

This model is based on a classical branch of mathematics known as conformal mapping that solves a problem related to a complex geometry by reducing it to a simpler geometry (and vice-versa).

The text above is a summary, you can read full article here.