Researchers from the University of Liverpool have made a significant breakthrough in the direct conversion of carbon dioxide (CO2) and methane (CH4) into liquid fuels and chemicals which could help industry to reduce greenhouse gas emissions whilst producing valuable chemical feedstocks.

In a paper published in chemistry journal Angewandte Chemie they report a very unique plasma synthesis process for the direct, one-step activation of carbon dioxide and methane into higher value liquid fuels and chemicals (e.g.

This is the first time this process has been shown, as it is a significant challenge to directly convert these two stable and inert molecules into liquid fuels or chemicals using any single-step conventional (e.g.

The one-step room-temperature synthesis of liquid fuels and chemicals from the direct reforming of CO2 with CH4 was achieved by using a novel atmospheric-pressure non-thermal plasma reactor with a water electrode and a low energy input.

Dr. Xin Tu, from the University's Department of Electrical Engineering and Electronics, said: "These results clearly show that non-thermal plasmas offer a promising solution to overcome the thermodynamic barrier for the direct transformation of CH4 and CO2 into a range of strategically important platform chemicals and synthetic fuels at ambient conditions.

"This is a major breakthrough technology that has great potential to deliver a step-change in future methane activation, CO2 conversion and utilisation and chemical energy storage, which is also of huge relevance to the energy & chemical industry and could help to tackle the challenges of global warming and greenhouse gas effect."

The text above is a summary, you can read full article here.