For decades, scientists have searched for effective ways to remove excess carbon dioxide emissions from the air, and recycle them into products such as renewable fuels.

But the process of converting carbon dioxide into useful chemicals is tedious, expensive, and wasteful and thus not economically or environmentally viable.

Now a discovery by researchers at the U.S. Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) and Joint Center for Artificial Photosynthesis (JCAP) shows that recycling carbon dioxide into valuable chemicals and fuels can be economical and efficient - all through a single copper catalyst.

Going where the action is: product-specific active sites

When you take a piece of copper metal, it may feel smooth to the touch, but at the microscopic level, the surface is actually bumpy - and these bumps are what scientists call "active sites," said Joel Ager, a researcher at JCAP who led the study.

These active sites are where the magic of electrocatalysis takes place: electrons from the copper surface interact with carbon dioxide and water in a sequence of steps that transforms them into products like ethanol fuel; ethylene, the precursor to plastic bags; and propanol, an alcohol commonly used in the pharmaceutical industry.

The text above is a summary, you can read full article here.